Siglo XXI. Diario digital independiente, plural y abierto. Noticias y opinión
Viajes y Lugares Tienda Siglo XXI Grupo Siglo XXI
21º ANIVERSARIO
Fundado en noviembre de 2003
Ciencia
Etiquetas | Biomedicina | Científicos | Universidad

Investigadores españoles diseñan e insertan nanoreactores artificiales en modelos de tejidos tumorales

Los nanoreactores desarrollados, que se han detallado en la revista 'Cell Reports Physical Science', presentan una alta versatilidad y modularidad y se podrán modificar para preparar diferentes tipos de tejidos catalíticos
Redacción
jueves, 18 de junio de 2020, 11:20 h (CET)

fotonoticia_20200618105013_640_1

Investigadores del CiQUS de la Universidad de Santiago de Compostela (USC), basado en una colaboración entre los equipos dirigidos por José Luis Mascareñas y Pablo del Pino, han desarrollado un nuevo concepto científico basado en el desarrollo de tejidos catalíticos.

"Como prueba de concepto, en este trabajo interdisciplinar hemos propuesto un novedoso nanosistema híbrido formado por un núcleo metálico (paladio) y una corteza porosa basada en una red metalo-orgánica (MOF, Metal-Organic Framework), que actúan de forma sinérgica para transformar compuestos químicos de forma selectiva y recurrente en el interior de células y tejidos", explica Del Pino.

Por primera vez, se ha demostrado que este tipo de nanoimplantes pueden insertarse en modelos de tejidos tumorales, siendo capaces de activar moléculas externas de forma selectiva, durante al menos una semana. Esta contribución pionera pretende establecer las bases para la creación de una nueva generación de nanoreactores que, debido a su versatilidad, estabilidad y durabilidad, se espera que puedan ofrecer nuevas oportunidades en el ámbito biomédico.

"Específicamente, el objetivo final consiste en realizar nanoimplantes 'in vivo' de sistemas con actividad catalítica que puedan ser usados como factorías para generar moléculas bioactivas de forma localizada", añade el investigador del CiQUS.

Los nanoreactores desarrollados, que se han detallado en la revista 'Cell Reports Physical Science', presentan una alta versatilidad y modularidad y se podrán modificar para preparar diferentes tipos de tejidos catalíticos. La implantación de estos tejidos en organismos vivos podría ser una herramienta muy valiosa para poder realizar transformaciones químicas. Por ejemplo, podrían permitir la producción in vivo, y localizada en dichos tejidos, de fármacos u otros compuestos de interés biomédico.

Noticias relacionadas


Perú cuenta con un potencial estimado de más de 125.500 megavatios (MW) para la producción de energía limpia. Esta capacidad apenas es cubierta por las Energías Renovables No Convencionales (ERNC), que representan menos de 6% de la producción nacional de electricidad.

Cada 25 de abril, el mundo conmemora el Día Internacional del ADN, un tributo al hallazgo que cambió para siempre nuestra comprensión de la vida: la estructura de doble hélice del ácido desoxirribonucleico (ADN). En 1953, James Watson, Francis Crick, Rosalind Franklin y Maurice Wilkins desentrañaron este enigma biológico, sentando las bases de la genética moderna. Pero ¿qué hace al ADN tan extraordinario? ¿Qué nos anuncia para el futuro?

Marian Diamond desafió la ciencia de su tiempo y demostró que el cerebro puede rejuvenecer, crecer y transformarse si se le da lo que necesita: estímulos, curiosidad y vida. Estudió una muestra del cerebro de Albert Einstein y lo hizo con la mirada de quien sospecha que incluso los genios tienen secretos escondidos entre las neuronas. No era un gesto de irreverencia. Era ciencia de la que hace historia.

 
Quiénes somos  |   Sobre nosotros  |   Contacto  |   Aviso legal  |   Suscríbete a nuestra RSS Síguenos en Linkedin Síguenos en Facebook Síguenos en Twitter   |  
© 2025 Diario Siglo XXI. Periódico digital independiente, plural y abierto | Director: Guillermo Peris Peris
© 2025 Diario Siglo XXI. Periódico digital independiente, plural y abierto